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Abstract

Measurement of three-dimensional, skeletal kinematics is important for clinicians and engi-
neers alike. Most in vivo motion data are acquired using skin-mounted markers or marker arrays.
Experiments were carried out to quantitatively evaluate the validity of using skin-mounted
markers to measure the three-dimensional kinematics of the underlying bone. Kinematic data for
marker arrays mounted on skeletal pins screwed directly into the bone were compared with data
for markers, and arrays of markers, mounted on the skin. Findings included: (1) Task-dependent
soft tissue motion relative to the underlying bone of up to twenty millimeters was measured; )
The accuracy of segmental rigid body velocity estimates was inadequate for determining instanta-
neous helical axis (IHA) parameters; (3) Power spectra for skin- and pin-mounted arrays cover
similar frequency bands and there was no evidence of a distinct, frequency domain soft tissue
artifact; (4) Joint angles calculated from the relative rotation of skin-mounted arrays had
significant differences compared to the expected values due to soft tissue effects; and (5)
Skin-mounted marker data exhibited a transient response to heel strike in gait, but for low-mass
markers the transient was well-damped and could be removed with optimal smoothing.
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1. Introduction

A complete understanding of lower extremity kinematics is important for
assisting clinicians and engineers in both the prevention, diagnosis, and treat-
ment of knee disorders and the design of better prosthetic devices with longer
mean times to failure. In order to determine the skeletal kinematics accurately
the acquisition of reliable data representing the bone motion is essential. Only
after accurate data have been obtained can the clinician and engineer begin to
fully understand the kinematic behavior of the lower extremity, particularly that
of the human knee.

Several researchers have used markers mounted on skeletal pins inserted into
the bones or markers inserted directly into the bones of the lower extremity to
measure in vivo kinematics (Chan, 1993: Kérrholm, 1989; Lafortune et al.,
1992; Murphy and Mann, 1991). The trajectories of these markers are tracked to
estimate the position, velocity, and acceleration of the markers and bones. While
this approach generates a valid representation of the motion of the skeletal
components of a joint, several characteristics of this method make it inappropri-
ate for everyday clinical measurements. These include: (1) the subject might
experience pain during the procedure, causing the alteration of otherwise
painless motions; (2) the risk of infection: (3) the risk of pin loosening during
the experiments, which could corrupt the accuracy of the data.

The most widely used method of data collection in biomechanics are skin-
mounted markers (Kaufman et al.,, 1991; Lafortune and Lake, 1991; Macleod
and Morris, 1987; Trujillo and Busby, 1990). Skin-mounted markers are unques-
tionably safer and easier to use than pin markers, but there are only limited data
addressing the validity of skin-mounted marker kinematic data as an accurate
representation of lower extremity skeletal motions.

This paper presents the initial results of two comparative studies of skin-
mounted and pin-mounted marker kinematic data for the lower extremity.
Analysis will center around the kinematics of of the femur and the tibia, the two
largest bones of the human lower extremity. The purpose is to report on the
validity of skin-mounted markers for the estimation of skeletal kinematics.

2. Background

The limitations of skin-mounted markers for measuring skeletal kinematics
have long been tacitly acknowledged. Most of the research into quantifying the
magnitude of the problem has been reported in the past decade, as access to
motion analysis systems has increased.
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Some of the earliest quantitative work on the motion of skin markers was
reported by Macleod and Morris (1987). Markers were placed at bony land-
marks and along the thigh and shank. The movement of the markers was
recorded during normal gait. Relative displacements between markers due to
soft-tissue motion and impact were observed and found to be non-random.
While this study recognized that significant errors generated during data collec-
tion employing skin-mounted markers were due to soft tissue motion relative to
the underlying bone, no bone-mounted markers were used to obtain the true
skeletal kinematics and, consequently, the magnitude and nature of this motion.

Van den Bogert et al. (1990) reported on the skin displacement errors
encountered during analysis of the motion of a horse. Again, the error intro-
duced by the skin motion was cited as a major source of inaccuracy in the
kinematic analysis and the authors developed two-dimensional correction factors
to adequately adjust the skin marker measurements. They speculated that similar
procedures would be necessary in studying human motion, although the magni-
tudes of soft tissue displacements were expected to be smaller though still
significant. Also, the two-dimensional correction algorithm ignored the out-of-
plane motions present in a spatial joint such as the human knee. Lafortune
(1991) measured tibial acceleration using a pin-mounted accelerometer attached
to the free end of a Steinmann pin inserted into a subject’s right tibia. He
suggested that simultaneous measurements with pin- and skin-mounted markers
should produce enough data to determine a transfer function relating the two
signals, allowing the use of skin-mounted markers to predict the acceleration of
the underlying bone. In another study, Lafortune and Lake (1991) reported that
skin markers do not accurately measure 3-D joint kinematics, due to the
substantial displacements of the skin-mounted markers relative to the underlying
bone which occur during joint motion. Reinschmidt et al. (1995) studied the
relationship between skin and pin-mounted markers during running. The data
showed that while the shapes of the pin- and skin-mounted data were similar,
the skin markers tended to overpredict the actual skeletal motion, indicating soft
tissue motion relative to the underlying bone.

The effects of skin motion on different measurement systems have also been
reported. Kaufman et al. (1991) reported that it is possible to place skin-mounted
markers within five degrees of the anatomically defined axes derived from
computer models.

Application of instantaneous helical axes (IHAs) to the analysis of joint
motion in the presence of skin motion has been described by Karlsson et al.
(1991) and Angetoni et al. (1993). Karlsson compared kinematics measured with
skin-mounted marker arrays to those obtained using pin-mounted marker arrays
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surgical screws to the greater trochanter, femoral condyle, and mid-tibia. The
arrays were identical in shape and size to the skin-mounted arrays placed at the
same locations in the earlier set of experiments. In addition, the two rigid arrays
were again strapped to the subject’s right hip and foot for a total of thirty LEDs.
Fig. 1 is a photograph of the test subject’s lower extremity with the skeletal pin
arrays mounted, as well as the hip and foot arrays. The following tasks were
performed for data collection of the pin-mounted markers: standing voluntary
swing, normal gait, a seated mobility trial, and a ninety-degree pivot step. The
subject experienced no pain during this phase of the data collection and no
awkwardness was noted in the subject’s movements. The pins were removed
immediately following the experiment.

Data processing was identical for both the pin-mounted markers and the
skin-mounted markers. A body-fixed coordinate system was established by
having the subject stand erect in the center of the viewing volume, taking the
mean of each individual LED, and transforming that from the laboratory
coordinate system origin to the respective array coordinate system origin,
located at the centroid of each array. Data were collected and processed using
TRACK III software (Antonsson and Mann, 1989) modified to incorporate
Schut’s original unit quaternion formulation (Schut, 1960), and Dohrmann’s
algorithm for GCV-based cubic spline smoothing (Dohrmann et al., 1988).

A simple estimate of the flexion angle, similar to that used in most gait
laboratories, was used as a standard for comparing the flexion angles calculated

Y
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Fig. 2. Schematic of the vectors used in estimating the flexion angle at the knee based on the positions of the
array-fixed coordinate system origins.
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from the relative rotations of the marker arrays in the two sessiong of ¢ 25
experiment. The relative positions of the origins of the array-fixeq o e.ﬁrst
systems were used to evaluate the approximate range of flexion ang ext, Magg
The scalar product of the vector from the center of the lateral condyle eHSion.
the center of the greater trochanter array and the vector from the Centey
lateral condyle array to the center of the tibial array provided an estj
flexion angle during the swing task (Fig. 2).

Y to
3.2. Experiment 2

The second data set was taken from a 1.88 m white male with

approximately 104 kg. The subject was between 35 and 40 years of age “\:/E_lss of
ith
N

24  Marker number

P1 Pin-mounted array

Fig. 3. Schematic of pin array and skin marker distributions for Experiment 2,
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known prior lower extremity injuries. Kinematic data acquisition was accom-
plished with the TRACK V /Selspot II kinematic measurement system. The
TRACK V /Selspot II system consisted of two optoelectronic cameras capable
of tracking up to 32 near-infrared emitting markers and a Kistler piezoelectric
force platform synchronized with the kinematic measurement system. Each
marker consisted of a triad of LEDs in order to produce higher intensities for
following out-of-plane motions, and the sampling frequency for all LEDs in this
experiment was 156.2 Hz. The spatial resolution of the system at the center of
the viewing volume was 0.25 mm on each axis. Calibration of the TRACK
V /Selspot II system is discussed in Mansfield (1990).

The subject’s right leg was instrumented with two arrays of six markers each

Fig. 4. Skeletal pin- and skin-mounted arrays for Experiment 2.
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mounted on skeletal pins inserted into the tibia and femur at the tibial tubercle
and greater trochanter, respectively. The remaining twenty markers were dis-
tributed evenly along the thigh and shank and attached directly to the skin with
double-sided tape (3M 1512). Fig. 3 is a schematic of the subjects lower
extremity which indicates the approximate locations of the skin- and pin-mounted
markers on the thigh and shank. A photograph of the instrumented leg is shown
in Fig. 4. The additional skeletal pins which can be seen in the photograph were
used in second set of experiments on skeletal joint kinematics which have been
partially reported in Chan (1993).

Four tasks were performed: stationary bicycling, squatting, normal gait, and a
voluntary swing movement. Data were recorded using the TRACK V software
package (Mansfield, 1990). The method of calculating the 3-D point coordinates
was identical for both the pin- and skin-mounted marker data sets.

The pin-mounted kinematic data were further processed to provide rigid body
kinematics of the femur and tibia using TRACK V. Three-dimensional point

200

Angular Velocity Vector (Degrees/Second)

Component (Sommer, bttt
Component (Sommer, FRAAK KA A KKK
Component {Sommer’ 0000000000
Component (dual screw
Component (dual screw
Component (dual screw!
" L ] " 1 L

0 1 2 3 4 ‘ 5

-200

Time of Motion (Seconds)

Fig. 5. Comparison of the angular velocity vector components in global coordinates of the femur for the
bicycle task of Experiment 2 calculated using both TRACK V and Sommer’s method.
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coordinates were smoothed using the Dohrmann algorithm for GCV-based cubic
spline smoothing (Dohrmann et al., 1988). Conversion to rigid body coordinates
was accomplished by applying the Schut algorithm (Schut, 1960), which is
incorporated into the TRACK V software. The algorithm assumes that the
individual markers are fixed in a rigid array with a specified geometry and
generates a rotation transformation in the form of a quaternion. A Lanczos

Ys

SEGMENT 5

SEGMENT 4

SEGMENT 8

Y2

SEGMENT 2

n

SEGMENT 1

Fig. 6. Location and orientation of the embedded segmental coordinate sysyems for Experiment 1.

i
v

s

A
]
i
li
|

T —



DISPLACEMENT VECTOR [METERS]

DISPLACEMENT VECTOR (METERS)

.05

.05

.20

.25

J. Fuller et al. / Human Movement Science 16 (1997) 219-242

T TV T

.30 L

"\Qf’a

e

|||rl||11l||||l|n||||ln|||||.l|l|ll||n|l|n|l

it ]
® fl"

LY
<

w
51

)
é
l
|
l
l
|
\

| SN INN I WY NN VU NN T (S SN N SO R U |

e

6 .1 .2 .3 .4 5 6 .7 8 1.0 1.1 1.
TIME [SECONDS]
SEGMENT NO. 2 RELATIVE T0O 3
|$ [~ T L} L T 1 T ¥ 1 T L T T
(D)
el / 3
P /\ / ]
AY y ]
‘l /‘ \‘\,—*\ / h
o \J § :
..- S——t —_—
.05'- N

S NI ST IR A W

A .2 .3 .4

.5

.6 7 .8

TIME [SECONDS)
SEGMENT NO.

2 RELATIVE TO

229



230 J. Fuller et al. / Human Movement Science 16 (1997) 219-242

A5 LA L B S B Ay B p e e e S ]
() ]
RT3 — ]
o5k / N // ]
3 i /N \*‘—\.\_\) ]
SNV ]
Q- -
i L NN, -~ ]
[+ o .
S -.e5L .
T i
z -ef ]
& L ]
S .t 1
& -asf ]
wn B
a 3 ]
-2 .
-.25 Sl S \a\/&_/ ]

-.30 : 1 L 1 1 1 1 1 1 L 1 1 1 1 1 1 1 1 ] 1 1

) T2 3 e 5 6 7 8 9 1.0 1.7 1.

TIME [SECONDS]
SEGMENT NO. 2 RELATIVE To 3
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four-point differentiation filter was used to obtain angular and translational
velocity vectors of the pin markers.

This approach was not suitable for processing the skin-mounted marker data,
because the markers could not be placed in a pre-defined geometry to the
necessary tolerance. An alternative algorithm for the estimation of rigid body
kinematics developed by Sommer uses only three-dimensional marker coordi-
nates and does not require specification of the marker array geometry (Sommer,
1992). For evaluation, Sommer’s algorithm was used to process the pin-mounted
data. Fig. 5 shows a representative comparision of the angular velocity vector
components of the femur during the bicycle task calculated using both Sommer’s
algorithm and the Schut algorithm. Essentially no difference was noted in the
rigid body kinematics of the femur and the tibia estimated by Sommer’s
algorithm and those obtained from TRACK V, using the Schut algorithm, for
any task. Sommer’s algorithm was then used to estimate the rigid body
kinematics of the femur and tibia based on the measured 3-D displacements of

- »..uw-«-_acl
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the skin-mounted markers. Comparison of the two sets of rigid body kinematics
for the femur and tibia were made in order to determine the validity of data
obtained using skin-mounted markers for estimating three-dimensional skeletal
kinematics.

4. Results and discussion

4.1. Experiment 1

The primary objective of the first experiment was to obtain data on the
relative skeletal movements at the knee. All data show the motion of the tibia
relative to the femur in the body-fixed femoral condyle array coordinate system.
In the neutral position used to define the array-fixed coordinate systems, the
nominal directions of the body-fixed coordinate axes were toward the subject’s
rear for x, up for y, and normal to the axis between cameras in the direction of
the forceplate for z (see Fig. 6). The effects of soft tissue motion were
investigated for the gait and standing voluntary swing tasks.

The unsmoothed relative displacement vector for motion of the tibia relative
to the femur for the gait trials with the skin-mounted markers showed a distinct,

20 T T T
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g |
2 il
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2 oL
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a | |
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& Sh | ]
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Fig. 8. Power spectral estimates for the z displacement of the origin of the array-fixed coordinate system on
the femoral condyle in Experiment 1.
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degrees as the leg was extended to a flexion angle of 155 degrees at completion
of the movement. The estimated flexion angle followed a similar trajectory over
a range of motion of nearly 110 degrees, but was offset by from 20 to 30
degrees from the first curve. The offset increased as the flexion angle increased,
with the best agreement near maximum extension. A similar plot is presented in
Fig. 9b for the skin-mounted marker experiment. The range of motion for the

the flexion /extension angle measured with the skin-mounted marker arrays are
either soft-tissue motion or inadequate fixation of the markers to the skin. Since
the skin array appears to initially lag the skeletal motion, but eventually track
the motion well, and other kinematic components do not show any obvious
adverse affects the former hypothesis appears to be the more probable.

4.2. Experiment 2

segments.
Significant differences were observed between the rigid body angular veloci-
ties calculated from the skin-mounted markers and those calculated using the
pin-mounted markers, Calculation of the rigid body velocities is necessary to
estimate the location and orientation of the instantaneous helical axes (IHAs) of

Fig. 12. Soft tissue motion relative to the bone for LED 21 on the thigh for the bicycle task in Experiment 2:

(a) x direction displacement offset, (b) y direction displacement offset, and (c) z direction displacement
offset.
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the motion. Representative data are presented in Fig. 10 for the motion of the
femur during the bicycle task. A cyclic motion can be observed for all three
angular velocity components calculated from the pin-mounted marker data.
There is agreement between the z-axis (nominally the sagittal plane) compo-
nents measured from both sets of markers, particularly at higher velocities. For
the x- and y-axis components of the angular velocities, there are significant
differences between the two data sets through several pedalling cycles. Similar
differences were observed for the translational velocity components along all
axes. Results for the angular and translational velocity components of the tibja
exhibited similar variations, Comparable differences were observed for all tasks.

Direct measurements of the displacement of the soft tissue relative to the
bone, which may explain the observed variations in the velocity components,
were also obtained. In order to check the assumption that the skin- and
pin-mounted markers were effectively on the same rigid body, the projected
rigid body motion of the skin-mounted markers was calculated and compared to
the measured skin-mounted marker displacements.

Each pin-mounted marker array defined a body-fixed coordinate system
attached to the bone. In the neutral position, a vector from the origin of the
body-fixed coordinate system to each skin marker was calculated. Assuming that
all of the markers were on the same rigid body, these vectors should have a

at each time step in a task were obtained from the pin-mounted marker data and
used to predict the rigid-body displacement of the skin-mounted markers.

The displacement of the soft tissue relative to the bone was calculated by
taking the difference between the predicted position vector for each skin-mounted
marker and the measured position. Representative plots for two markers on the
femur during the stationary cycling task are shown in Figs. 11 and 12. LED 1
was located near the pin-mounted marker array at the greater trochanter on a

Fig. 13. Soft tissue motion relative to the bone for LED 21 on the thigh for the gait task in Experiment 2: (a) x
direction displacement offset, (b) y direction displacement offset, and (c) z direction displacement offset.
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marker relative to the bone of twenty millimeters. This cyclic displacement
showed virtually identical periods of oscillation on the x, y, and z-axes,
consistent with the angular and translational velocity plots for the femur during
the bicycle task.

In order to further quantify soft tissue motion near the femoral condyle, a
common attachment site for skin-mounted markers, the displacement of LED 21
relative to bone is presented in Fig. 13 for the gait task. Again, displacements of
up to twenty millimeters were observed throughout the trial, indicating that the
skin-mounted marker was not tracking the underlying bone motion accurately.
Distinct differences were noted between the patterns of motion of the markers
during the cycling and gait tasks, indicating that the soft tissue displacement is
task dependent. The characteristic task dependence was consistent for all other
markers and tasks.

5. Conclusions

Several conclusions can be drawn from the experiments about the use of
skin-mounted markers for monitoring skeletal motion. First, the skin-mounted
marker data are inappropriate for representing the motion of the underlying
bones. Rigid skin-mounted marker arrays do not track rotation of the bone well,
particularly on the femur. Significant differences in relative angular displace-
ment calculations based on skin-mounted marker arrays were observed about all
axes of rotation. Displacements of the individual skin-mounted markers relative
to the underlying bone of up to twenty millimeters were observed in all tasks of
the second experiment and screw axis calculations reflected the same effects.
Second, although the soft tissue motion appears to be cyclic, it was task
dependent. The patterns of motion differed significantly from task to task. This
would make the definition of corrective transformations between the skin-
mounted markers and the bone task dependent. Third, elimination of heel-strike
transients in skin-mounted marker data is possible with optimal smoothing.
These transients are well-damped when low-mass arrays or markers are used.
Power spectra indicate that there is not a distinct soft tissue noise transient
which can be filtered using conventional frequency domain techniques. Attempt-
ing to remove soft tissue artifacts through smoothing could result in the loss of
pertinent data or the introduction of characteristics not present in the original
data set due to the overlap between the soft tissue noise frequency band and the
skeletal kinematics frequency band.
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